PcExl1 a Novel Acid Expansin-Like Protein from the Plant Pathogen Pectobacterium carotovorum, Binds Cell Walls Differently to BsEXLX1

نویسندگان

  • Miguel Olarte-Lozano
  • Mario A. Mendoza-Nuñez
  • Nina Pastor
  • Lorenzo Segovia
  • Jorge Folch-Mallol
  • Claudia Martínez-Anaya
چکیده

Microbial expansins act on plant cell walls similarly to plant expansins, albeit their loosening activity levels are tenfold lesser compared to plant expansins. We report the characterization of an expansin-like gene from the plant pathogen Pectobacterium carotovorum, named exl1. PcExl1 is an acidic protein that binds cellulose (Avicel), and weakens filter paper. The acidic nature of PcExl1 confers different binding properties when compared to Bacillus subtilis BsEXLX1, which is a basic protein. PcExl1 binding to wheat cell wall increased when acidic components were depleted, reaching a similar level to the binding to Avicel, indicating that cellulose is the target of PcExl1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis thaliana cells: a model to evaluate the virulence of Pectobacterium carotovorum.

Pectobacterium carotovorum are economically important plant pathogens that cause plant soft rot. These enterobacteria display high diversity world-wide. Their pathogenesis depends on production and secretion of virulence factors such as plant cell wall-degrading enzymes, type III effectors, a necrosis-inducing protein, and a secreted virulence factor from Xanthomonas spp., which are tightly reg...

متن کامل

Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss

Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in t...

متن کامل

Soft Rot Disease Severity Is Affected by Potato Physiology and Pectobacterium taxa

Marquez-Villavicencio, M. D. P., Groves, R. L., and Charkowski, A. O. 2011. Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Dis. 95:232-241. Pectobacterium species cause disease worldwide in many crop and ornamental plants, including potato. A new Pectobacterium subspecies, P. carotovorum subsp. brasiliensis was recently described in Brazil and later fo...

متن کامل

Salmonella enterica Suppresses Pectobacterium carotovorum subsp. carotovorum Population and Soft Rot Progression by Acidifying the Microaerophilic Environment

UNLABELLED Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pa...

متن کامل

The Type III Secreted Effector DspE Is Required Early in Solanum tuberosum Leaf Infection by Pectobacterium carotovorum to Cause Cell Death, and Requires Wx(3–6)D/E Motifs

Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effector protein, DspE. Previously, we found that the T3SS regulator HrpL and the effector DspE are req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014